属马的今年多大驱动器是系统的功率变换部分,是驱动电机运转的关键部分,该部份包括整流、逆变、前置驱动、SVPWM驱动输出、电流检测及多种功能。硬件电路如图4所示。电流环的运算需要DSP对电机相电流的检测 ,该系统设计只需要采集两相的电流(图3中iA,iB),根据电流就可以知道第三相的电流了。本系统所采用电流。图4中的IR2136(U1)是IR公司的高压IGBT驱动器,它接受来自DSP的6路PWM信号,处理后驱动图4中6只IGBT(Q1-Q6),产生SVPWM信号,
永磁同步电机精确控制离不开编码器,DSP只有通过对编码器A、B信号及U、V、W信号的检测计算,才能完成电机仍至整个系统的精确控制。另一方面,我们只有自己设计并制作编码器,才可将价格降到最低限度。图5为编码器硬件图,U1(HEDS9701)采集A、B信号,PH-U、PH-V、PH-W三只光电开关检测产生U、V、W信号,它们与码盘一起装在电机内,检测电机转速、判断转子,并将采集信号送给DSP。DSP(TMS320F2406)内部带有正交编码模块,从编码器输出的正交信号输入DSP的PHASEA引脚和PHASEB引脚,内部的正交编码模块将信号进行四倍频,再由计数器计数从而可以确定转子的速度和。
PHASEA和PHASEB的输入信号首先必须通过一个干扰信号滤波器,该滤波器可以数字延时,可以滤除毛刺,只有真正的信号才进行计数。同时对于只用单个信号的控制,均可配置为单个的脉冲计数。对于一个高速转轴编码器,转轴速度可以通过计算每单位时间内计数器的变化值来得到。对于电机低速时,由于输入PHASEA和 PHASEB与通用定时器相连均可作为输入捕捉引脚,可以利用定时器测量正交相位之间的时间周期来得到高分辨率的速度测量。定时器模块利用一个16位的计数器,通过对总线时钟的分频来计数。对于一个1000齿的编码器来说,通过利用定时器测量速度可以精确测量到0.15转每分。
编码器是装在电机里,而机头同步定位器则是装在机头里,它们均属于传感器的范畴。微机控制缝纫机的一个重要指标是停机的准确度,这里包括上针位和下针位的停机,所以,缝纫机在这两个必须各给出一个信号,DSP才可以通过检测这两个信号来控制电机停止,这是机头同步定位器的主要作用。另外电机运转通过与机头连接传动,可能存在打滑现象,只有结合电机编码器信号与机头同步信号,才能准确判断系统状态,从而系统运转在最佳状态。上下针位信号的产生主要是依靠安装在机头上的两块极性相反的磁铁(跟着电机旋转),对两个相反安装的开关型霍尔传感器(固定)作用,即每块磁铁仅对应一个传感器起作用。当机头旋转到上针位或下针位上时,相应的开关霍尔传感器因为到达其跳变的阈值,而产生输出跳变,也就是需要的开关信号,即机头同步信号。我们选用Allegro公司的U3144,应用方便,性能稳定。
目前该缝纫机控制系统已开发成功,并进行了小批量生产。从实际使用效果看,该控制技术实现了缝纫机针位控制的快速性与准确性,了高低速运行的平稳性,同时使缝纫机具备了自动剪线、自动拨线、自动前后加固的功能。基于DSP的定向控制技术是运用于缝纫机电气控制系统的突破口,它的成功开发,其意义不仅在于可以在工业缝纫机电控系统中获得较高的性能,另外可将该技术演化到其他种类的缝制纺织设备中去,以实现针位控制的快速性与准确性。
文章由325棋牌提供发布