现在市场上工业现场总线产生了几十种方案,却没有形成统一标准,工业以太网(IndustrialEthemet)成为控制系统网络发展的主流方向,传统以太网具有传输速度高、造价低、易于安装和兼容性好等优势,在商业系统中被广泛采用.但它采用总线式拓扑结构和载波多访问/冲突检测(CSMA/CD)方式,在实时性要求较高的场合下,数据的传输过程会产生延滞,具有“不确定性”.工业以太网通过增加信道带宽、采用全双工通信、设置数据报文优先级等方法改善了网络性能.其中还有很重要的一项措施就是采用层次拓扑结构.层次拓扑结构将网络划分为若干个网段,使得网络碰撞概率下降,提高了网络通信的确定性和实时性。
网络分段技术有硬件技术和软件技术两种实现方式.典型的硬件技术是采用以太网交换机或集线器将网络划分成更小的网段.交换机可对网络上传输的数据进行过滤,使每个网段内节点间数据的传输只限在本地网段内进行,而不需经过主干网.典型的软件技术是将CSMA/CD协议改进成一种Token-CSMA/CD混合控制协议.在轻负荷时,采用CSMA/CD协议,在重负荷时,采用总线优先级轮循Token Bus方式(高级别的总线传输优先级,类似于Token Bus协议中的令牌,在各节点之间轮循传递).这两种方法都是基于“网络分级”思想,由数级网络迭代而成的网络称为层次拓扑网络。
层次拓扑网络在实践中得到了广泛的应用,但由于现场网络太复杂,技术的合还没有严格的理论证明.而且这种方案也存在一些“副作用”,它的不确定性从本质上仍未得到解决,网络应该使用单总线结构还是使用层次拓扑结构要视具体情况而定.本文借助数学方法着重从理论角度分析了层次拓扑网络与原来的单总线网络的性能优劣,分析了它们的适用场合。
1 网络模型的建立与分析
1.1 模型假设
工业现场总线具有复杂网络的特性,结构不规则,分析起来非常困难,为了简化模型,在分析两种网络结构性能时,采用如下假设:
1)每个网段的节点数目都为N,在网段节点数小于N时网络能正常运行。
2)每个站对载波的侦听是瞬间完成的,即不引入收发切换时延,也不考虑外来噪音干扰。
3)空闲用户在每一个时隙内以概率P产生新的消息,每一消息所含的数据包长度服从几何分布。
4)碰撞冲突的分组将在后面的某一时刻重传,重传的分组对信道的到达过程没有影响。
1.2 模型建立
本文构造了一种理想模型——,.级网络数学模型.这是一种深度为,.的“满N叉树”模型,N为某个特定的,是网段微化后每个网段的节点个数.所谓“满』V叉树”是指除叶子节点(度为0的节点)外,每个节点都有N棵子树的树型结构,即分支节点(度不为0的节点称为分支节点)的度为N的树.图l就是一棵级数为3的满三叉树。
已经假设网络分段后每个网段的节点个数都为N,当网络节点个数,z小于N时冲突概率极小,网络处于实时活跃状态,能够满足网络实时通信应用的要求。
图1 级数为3的满三叉树
利用r级网络数学模型就把现场总线中杂乱无章的复杂网络抽象成了一种有序的树形结构.这种树形结构符合层次拓扑的规律,跟现实中的情况在一定程度上吻合,具有性.同时它还具有一些规范的数学性质,简化了数学分析的难度,例如: